Advantech INTRAC-305 Washer User Manual


 
INTRODUCTION INTRAC-305
Page vi INTRAC-305 MANUAL - ISSUE 3.2 © 2011 Advantech Wireless
INTRODUCING THE INTRAC-305
The INTRAC-305 INtelligent TRacking Antenna Controller is a
microprocessor based controller for tracking any nominally
geostationary satellite including those at low elevation or with
high angles of inclination. It has been designed as a direct
physical replacement for the Andrew APC300 Steptrack
Controller. For information on replacing an Andrew APC300
with the INTRAC-305 see section 6 - Installation.
The INTRAC-305 builds a model of the satellite’s orbit using a
mathematical algorithm. To build the orbit model the INTRAC
makes measurements by perturbing the antenna pointing
angle very slightly and monitoring the change in received
beacon signal strength. These small movements enable the
INTRAC to estimate the position of the satellite and this
estimate is used by the modelling algorithm.
The system always tracks the satellite from the orbit model.
The small movements of antenna pointing are only used to
maintain and update the model.
By using the model to point the antenna the INTRAC system
ensures that the antenna is always pointed accurately at the
satellite. This is in contrast to Step Track systems where the
antenna spends most of the time not actually pointing directly
at the satellite.
The regular measurements made by the INTRAC ensure that
changes in the apparent orbit, due to station keeping
manoeuvres or other causes, are identified. The model is
modified and refined to incorporate these changes and
accurate tracking is automatically maintained. The INTRAC
will automatically increase the measuring rate if necessary in
order to obtain sufficient information on the changing orbit.
As the INTRAC tracks using its orbit model it will continue to
track the satellite if the tracking signal is degraded or lost.
The satellite position may be accurately predicted from the
model for up to 72hrs without a tracking signal.
The INTRAC system provides this exceptional tracking
performance and robustness for satellites with any inclination,
at any look angle, even in the presence of severe beacon
signal degradation entirely automatically. No operator
intervention or parameter setting is required when conditions
or satellites are changed.